Extensive investigation of the IGF2/H19 imprinting control region reveals novel OCT4/SOX2 binding site defects associated with specific methylation patterns in Beckwith-Wiedemann syndrome.

نویسندگان

  • Walid Abi Habib
  • Salah Azzi
  • Frédéric Brioude
  • Virginie Steunou
  • Nathalie Thibaud
  • Cristina Das Neves
  • Marilyne Le Jule
  • Sandra Chantot-Bastaraud
  • Boris Keren
  • Stanislas Lyonnet
  • Caroline Michot
  • Massimiliano Rossi
  • Laurent Pasquier
  • Christine Gicquel
  • Sylvie Rossignol
  • Yves Le Bouc
  • Irène Netchine
چکیده

Isolated gain of methylation (GOM) at the IGF2/H19 imprinting control region 1 (ICR1) accounts for about 10% of patients with BWS. A subset of these patients have genetic defects within ICR1, but the frequency of these defects has not yet been established in a large cohort of BWS patients with isolated ICR1 GOM. Here, we carried out a genetic analysis in a large cohort of 57 BWS patients with isolated ICR1 GOM and analyzed the methylation status of the entire domain. We found a new point mutation in two unrelated families and a 21 bp deletion in another unrelated child, both of which were maternally inherited and affected the OCT4/SOX2 binding site in the A2 repeat of ICR1. Based on data from this and previous studies, we estimate that cis genetic defects account for about 20% of BWS patients with isolated ICR1 GOM. Methylation analysis at eight loci of the IGF2/H19 domain revealed that sites surrounding OCT4/SOX2 binding site mutations were fully methylated and methylation indexes declined as a function of distance from these sites. This was not the case in BWS patients without genetic defects identified. Thus, GOM does not spread uniformly across the IGF2/H19 domain, suggesting that OCT4/SOX2 protects against methylation at local sites. These findings add new insights to the mechanism of the regulation of the ICR1 domain. Our data show that mutations and deletions within ICR1 are relatively common. Systematic identification is therefore necessary to establish appropriate genetic counseling for BWS patients with isolated ICR1 GOM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tissue-specific and mosaic imprinting defects underlie opposite congenital growth disorders in mice

Differential DNA methylation defects of H19/IGF2 are associated with congenital growth disorders characterized by opposite clinical pictures. Due to structural differences between human and mouse, the mechanisms by which mutations of the H19/IGF2 Imprinting Control region (IC1) result in these diseases are undefined. To address this issue, we previously generated a mouse line carrying a humaniz...

متن کامل

O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development

Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...

متن کامل

Imprinting mutation in the Beckwith-Wiedemann syndrome leads to biallelic IGF2 expression through an H19-independent pathway.

The Beckwith-Wiedemann syndrome (BWS) is genetically linked to chromosome 11p15.5, and a variety of observations suggest that deregulation of imprinted genes in this region is causally involved in the pathogenesis of the disease. It has been shown that in some patients without cytogenetic abnormalities the otherwise repressed maternal copy of the insulin-like growth factor 2 (IGF2) gene is expr...

متن کامل

Oct4/Sox2 Binding Sites Contribute to Maintaining Hypomethylation of the Maternal Igf2/H19 Imprinting Control Region

A central question in genomic imprinting is how parental-specific DNA methylation of imprinting control regions (ICR) is established during gametogenesis and maintained after fertilization. At the imprinted Igf2/H19 locus, CTCF binding maintains the unmethylated state of the maternal ICR after the blastocyst stage. In addition, evidence from Beckwith-Wiedemann patients and cultured mouse cells ...

متن کامل

Mechanisms causing imprinting defects in familial Beckwith-Wiedemann syndrome with Wilms' tumour.

The imprinted expression of the IGF2 and H19 genes is controlled by the Imprinting Centre 1 (IC1) at chromosome 11p15.5. This is a methylation-sensitive chromatin insulator that works by binding the zinc-finger protein CTCF in a parent-specific manner. Microdeletions abolishing some of the CTCF target sites (CTSs) of IC1 have been associated with the Beckwith-Wiedemann syndrome (BWS). However, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 23 21  شماره 

صفحات  -

تاریخ انتشار 2014